The microtubule-targeting agents, PBOX-6 [pyrrolobenzoxazepine 7-[(dimethylcarbamoyl)oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine] and paclitaxel, induce nucleocytoplasmic redistribution of the peptidyl-prolyl isomerases, cyclophilin A and pin1, in malignant hematopoietic cells.

نویسندگان

  • Fiona T Bane
  • John H Bannon
  • Stephen R Pennington
  • Giuseppe Campiani
  • D Clive Williams
  • Daniela M Zisterer
  • Margaret M Mc Gee
چکیده

Microtubule assembly and disassembly is required for the maintenance of cell structure, mobility, and division. However, the cellular and biochemical implications of microtubule disruption are not fully understood. Using a proteomic approach, we found that the peptidyl-prolyl isomerase, cyclophilin A, was increased in plasma membrane extracts from chronic myeloid leukemia cells after microtubule disruption. In addition, we found that two peptidyl-prolyl isomerases, cyclophilin A and pin1, are overexpressed up to 10-fold in hematological malignancies compared with normal peripheral blood mononuclear cells. Although previous reports suggest that cyclophilin A is localized to the cytosol of mammalian cells, we found that cyclophilin A and pin1 are both localized to the nucleus and nuclear domains in hematopoietic cells. Microtubule disruption of hematopoietic cells caused a dramatic subcellular redistribution of cyclophilin A and pin1 from the nucleus to the cytosol and plasma membrane. We suggest that this accounts for the increased cyclophilin A at the plasma membrane of chronic myeloid leukemia cells after microtubule disruption. The subcellular redistribution of cyclophilin A and pin1 occurred in a c-Jun NH(2)-terminal kinase- and serine protease-dependent manner. Moreover, the altered subcellular localization of the peptidyl-prolyl isomerases occurred in a dose- and time-dependent manner after microtubule disruption and was found to correlate with G(2)/M arrest and precede induced cell death. These results suggest that the function of peptidyl-prolyl isomerases may be influenced by microtubule dynamics throughout the cell cycle, and their altered localization may be an important part of the mechanism by which microtubule-disrupting agents exert their cytostatic effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STI-571 (imatinib mesylate) enhances the apoptotic efficacy of pyrrolo-1,5-benzoxazepine-6, a novel microtubule-targeting agent, in both STI-571-sensitive and -resistant Bcr-Abl-positive human chronic myeloid leukemia cells.

Interactions between the Bcr-Abl kinase inhibitor STI-571 (imatinib mesylate) and a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-6, were investigated in STI-571-sensitive and -resistant human chronic myeloid leukemia (CML) cells. Cotreatment of PBOX-6 with STI-571 induced significantly more apoptosis in Bcr-Abl-positive CML cell lines (K562 and LAMA-84) than either ...

متن کامل

Identification of tubulin as the molecular target of proapoptotic pyrrolo-1,5-benzoxazepines.

We have demonstrated previously that certain members of a series of novel pyrrolo-1,5-benzoxazepine (PBOX) compounds potently induce apoptosis in a variety of human chemotherapy-resistant cancer cell lines and in primary ex vivo material derived from cancer patients. A better understanding of the molecular mechanisms underlying the apoptotic effects of these PBOX compounds is essential to their...

متن کامل

Novel microtubule-targeting agents, pyrrolo-1,5-benzoxazepines, induce cell cycle arrest and apoptosis in prostate cancer cells.

Advanced hormone-refractory prostate cancer is associated with poor prognosis and limited treatment options. Members of the pyrrolo-1,5-benzoxazepine (PBOX) family of compounds exhibit anti-cancer properties in cancer cell lines (including multi-drug resistant cells), ex vivo patient samples and in vivo mouse tumour models with minimal toxicity to normal cells. Recently, they have also been fou...

متن کامل

Experimental Therapeutics, Molecular Targets, and Chemical Biology The Novel Tubulin-Targeting Agent Pyrrolo-1,5-Benzoxazepine-15 Induces Apoptosis in Poor Prognostic Subgroups of Chronic Lymphocytic Leukemia

Pyrrolo-1,5-benzoxazepine-15 (PBOX-15) is a novel microtubule depolymerization agent that induces cell cycle arrest and subsequent apoptosis in a number of cancer cell lines. Chronic lymphocytic leukemia (CLL) is characterized by clonal expansion of predominately nonproliferating mature B cells. Here, we present data suggesting PBOX-15 is a potential therapeutic agent for CLL. We show activity ...

متن کامل

Induction of apoptosis in oral squamous carcinoma cells by pyrrolo-1,5-benzoxazepines.

Oral cancer (OC) is a largely asymptomatic disease, resulting in one of the highest mortality rates of any cancer. OC is currently ranked as the sixth most common cancer in the world, according to a recent World Health Organization analysis, and its prevalence is increasing, both in western and developing regions. Depending on the stage of OC, treatment strategies include surgery, radiation the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 329 1  شماره 

صفحات  -

تاریخ انتشار 2009